Suppose that the foci of the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ are $(f_1, 0)$

and $(f_2, 0)$ where $f_1 > 0$ and $f_2 < 0$. Let P_1 and P_2 be two parabolas with a common vertex at (0, 0) and with foci at $(f_1, 0)$ and $(2f_2, 0)$, respectively. Let T_1 be a tangent to P_1 which passes through $(2f_2, 0)$ and T_2 be a tangent to T_2 which passes through $(f_1, 0)$. If T_2 is the slope of T_1 and T_2

is the slope of T_2 , then the value of $\left(\frac{1}{m_1^2} + m_2^2\right)$ is

(JEE Adv. 2015)

Solution: -

$$4 \bullet (4)$$
 Ellipse: $\frac{x^2}{9} + \frac{y^2}{5} = 1$

$$\Rightarrow a=3, b=\sqrt{5} \text{ and } e=\frac{2}{3}$$

$$f_1 = 2$$
 and $f_2 = -2$
 $P_1: y^2 = 8x$ and $P_2: y^2 = -16x$

$$T_1: y = m_1 x + \frac{2}{m_1}$$

It passes through (-4, 0),

$$0 = -4m_1 + \frac{2}{m_1} \Rightarrow m_1^2 = \frac{1}{2}$$

$$T_2: y = m_2 x - \frac{4}{m_2}$$

It passes through (2, 0)

$$0 = 2m_2 - \frac{4}{m_2} \Rightarrow m_2^2 = 2$$

$$\therefore \quad \frac{1}{m_1^2} + m_2^2 = 4$$